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SECTION 1
INTRODUCTION

Angle-of-arrival (AOA) fluctuations from propagation through a
nuclear dust cloud pedestal can potentially degrade the tracking precision
of a sight defense radar (SOR). This note discusses the applicability of
various techniques for mitigating this effect. The emphasis taken here is
to estimate their theoretical effectiveness, although comments regarding

feasibility are also made.




SECTION 2
BACKGROUND

AOA jitter is caused by turbulence-induced index of refraction
fluctuations along the dust cloud propagation path. The magnitude of the
jitter may be specified by the standard deviation (oa) of its amplitude
distribution. For our purposes Oy does not represent the AOA fluctua-
tions on the received wavefront directly, but instead refers to the AOA
jitter measured by an antenna which intercepts some portion of the fluc-
tuating wavefront. As a result, the effects of a finite antenna aperture
size are always included when referring to o The nominal antenna

diameter assumed is 2 meters.

Predictions for Oy have been made by this author (Reference 1)
and others. Oy has been found to be directly proportional to the
integrated mass of dust along the radar sight path and this quantity is
largely unknown. Uncertainty in our knowledge of the dust turbulence
structure and its material properties have led to additional but smaller
variations in the predictions. Unfortunately, there is insufficient
experimental data to allow accurate forecasts of the nuclear dust cloud
pedestal environment., Since the radar propagation effects depend entirely
on the dust cloud environment, inaccuracies result in predicting the
propagation effects. However, for many situations, using nominal values
for the amount of material lofted, Oq has been found to be large enough
to potentially degrade radar performance.




é
i
|

There are various means by which the loss in tracking precision
caused by nuclear pedestal cloud ADA jitter may be at least partially
mitigated. The techniques we will consider are listed below.

Pulse integration
Frequency agility
Antenna size increases

Command quidance

Range triangulation

While the above 1list is incomplete, it 1is thought to include
those techniques with the most practical importance.




SECTION 3
DISCUSSION OF MITIGATION TECHNIQUES

PULSE INTEGRATION

Integrating or averaging the recorded AOA samples over time is a
conventional method to reduce the effect of jitter on an estimation of the
mean AOA. For N independent samples, the standard deviation in estimating
the mean AOA (OE? is related to the standard deviation in the raw AOA (oa)

by

o_ = o /N (1)
o

a

With N made sufficiently large, ¢_may be made as small as desired. Of
course, in any real system the sa%p]es would undergo some form of low pass
filtering, but for our analysis this is equivalent to averaging a finite
number of samples.

Several factors are seen to limit the increased tracking preci-
sion attainable for SDR applications through this technique. The radar
system must be capable of recording and processing sufficient samples in
the available tracking time. Since present radar concepts allow for the
ability to meet such a requirement, this is not seen to seriously impact
the feasibility unless the necessary decrease in the raw jitter becomes

excessive.




A second consideration is that of sampling independence. The

reduction in o_ predicted by Equation 1 is valid only when the N samples
are uncorre1af%d. As a means of addressing this subject, calculations
were made to predict the temporal response of the AOA jitter. Following
Reference 2, the normalized frequency spectrum of the AOA fluctuations is
given by

sin2(=Df/V)
f8/3 1 1.07V21¢/3
EEINLY

where

= antenna diameter
= frequency
outer scale of turbulence

< - O
H

= mean flow velocity of dust perpendicular to the radar'e
1ine of sight

and C = a normalization constant chosen such that

}owa(f) df = 1 . (3)
0

Here it was assumed that to first order the time behavior could be ob-
tained by Taylor's frozen flow hypothesis. In this approximation, the
main contribution to the change in the radar propagation path with time is q
due to the mean dust flow velocity perpendicular to the radar sight path. |
The additional assumptions were made of plane wave propagation through a
homogeneous layer of turbulence having a Kolmogorov distribution.




Figure 1 shows the frequency spectrum predicted by Equation 2
where the values of V chosen reflect those thought to be reasonable 1lim-
its for proposed radar operation in a nuclear dust cloud. V=300 meters/
second roughly corresponds to the peak particle velocity generated for a
shock wave peak overpressure of about 30 psi. V=30 meters/second would be
representative of velocities expected after passage of the blast wave
overpressure positive phase.

The time autocorrelation of the AOA fluctuations is obtained by
taking the Fourier transform of their frequency spectrum. Figure 2 shows
the autocorrelation of the AOA fluctuations predicted by transforming the
frequency spectra of Figure 2. It 1is seen that they are approximately
gaussian in shape, with standard deviations op = .04, .004 seconds for
V=30 and 300 meters/second, respectively.

Using these decorrelation times we may comment on the radar
sampling rates allowable that would guarantee sampling independence. For
a gaussian autocorrelation with standard deviation o the necessary
t ime interval for sampling independence (TI) is given by

T = V2n o (4)

Sampling at a more rapid rate gives practically no new information and no
improvement on a true estimate of the mean (see Reference 3). From Equa-
tion 4 Ty=.1, .01 seconds for the cases V=30, 300 meters/second respec-
tively. These sampling intervals fall within the interesting range of
sampling times under consideration for propcsed SDR operation.

We conclude that the subject of sampling independence should be
carefully considered when assessing the reduction in angle errors achiev-
able through the use of pulse integration.
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Figure 1. Normalized spectrum of angle-of-arrival fluctuations for a 2
meter diameter antenna. (Assumes Kolmogorov turbulence with an
outer scale of 10 meters.)
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FREQUENCY AGILITY

A frequency agile radar performs multiple frequency RF transmis-
sions during a single lock at a target. When the frequency steps result
in ADA returns which are uncorrelated, averaging them will allow the
equivalent reduction in jitter as is achievable through pulse integration
of this number of independent sanples recorded over time, The merits of
frquency diversity mayv be evaluated by estimating the correlation between
the AQA of two wavefronts received simultaneously after propagating along

the same sight path at different RF frequencies.

Figure 3 shows the perturbation in the arrival angle of a
received wavefront after propagating a distance L through 3 dust laver.
lsing the simple phase interferometer shown to model the antenma angle

estimator, the ADA 1s given in the small angle approximation to be

o

a = (L, y) - a(L,yeD)
77D

where y is the coordinate transverse to the propagation direction and

il wlmally v i the difference in phase meaciosod hy the Saterfero-

-

meter of size D.

A useful simplification for calculating the phase difference is
to apply geometrical oplics methods. This may be justificd by noting that
diffraction effects have been found to have very littie impact on predic-
tions for phase front perturbations when the propagaticn path length L is

such that (see Reference 4)

L < av/a (6)

11
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Figure 3. Estimation of the angle-of-arrival by a phase interferometer.




where A is the RF wavelength, and Ay is the distance perpendicular to the
mean phase front over which phase differences are measured. For an AQA
measurement, ay becomes the antenna diameter D. Using the nominal antenna
diameter of 2 meters and an RF wavelength of 3 cm, we see that geometrical
optics techniques are applicable for path lengths of about 130 meters or
less, and this distance is comparable to the longest path lengths of

interest.

In the geometrical optics approximation and for plane wave
propagation in the x direction, the phase difference is given by

2m

o(Lsy) -o(Loy*D) = — [ [n (x,¥) - n_{x,y+D) )dx (7)

O

where the integration traverses the pedestal cloud along paraliel rays
spaced a distance 0 apart. ng(x,y) and ng(x,y+D) are the indices of
refraction of the pedestal cloud medium at positions along the paraliel
rays.

On substitution of Equation 7 into Equation 5 we obtain

a:

o) —

L
é (a6 ¥) = 0 (x, y+0) Jdx (8)

and the AQA is seen to not depend on RF frequency except through possible
frequency dispersion of the medium.

The frequency dispersion of the mediun may be obtained as a

function of the properties of the bulk material lofted into the pedestal
cloud through the Clausius-Mossotti formula (see Reference 5)

13
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0 = mass density of the pedestal cloud medium

= mass density of the bulk material

nb(F) = complex index of refraction of the bulk material as a
function of RF frequency.

Using Equation 9 to substitute for (np(x,y) - ni(x,y+D)) in Equation 8
we obtain

[ ey (xs¥) = g (x,y+D) ldx (10)

> 11)
n (F)2+2 (

In Table 1 we list the bulk indices of refraction for represen-
tative materials of interest at UHF and X-band and the resultant variation
in AOA predicted by Equation 11. It is observed in Table 1 that the vari-
ation in AQA with frequency is small for each of the materials considered.
For the approximate decade frequency change from UHF to X-band there is a
maximum variation of about 15% in the AOA. Therefore we expect tha} the
frequency dependence of the AOA for a dust cloud consisting of a mixture
of these materials would be small also.

14




Table 1. Variation in AOA predicted by Equation 11.

Material ny(F) a = Re np(F)?-1 Reference
P N (F)2+2
Sand (UHF) 2.2 - .090j .56 6
Sand (X-band) 2.0 - .035j] .49 )
Caliche (UFH) 2.5 - .133] .64 6
Caliche (X-band)| 2.2 - .043j .56 6
Water (UHF) 8.8 - .1203 .86 7
Water (X-band) 7.5 - 2.300] .96 7
The results of this section may be summarized as follows: In

considering the effects of RF frequency variations, we first observe that
for the propagation path lengths and antenna size of interest, diffraction
effects can be neglected. Then, using geometrical optics theory we show
that the remaining RF frequency varation is due to the fregquency disper-
sion properties of the medium, and this effect is also found to be very
small. As a result, we predict very little decorrelation in the AQA within
the RF frequency ranges of interest. Thus, we do not expect that freguency

agility will be an effective mitigation technique,

ANTENNA SIZE

Increasing the size of an antenna has heen shown to reduce the
level of jitter on the antenna's ADA estimate (Reference 8). The mechaniam
responsible for this reduction is the antenna aperture averaging of the

received phase front.

Calculations were performed to evaluate the dependence of Oy

on antenna size. The results are shown in Fiqure 4, The formulation
described in Reference 1 was utilized to make these calculations. The
15
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pedestal cloud dust density assumed here represents an environment where 2
centimeters of scoured caliche have been distributed vertically with an
exponential scale height of 6 meters. A Kolmogorov turbulence spectrum
with an outer scale of 10 meters has also been assumed. Antenna diameter
variations of from 2 to 20 meters for target elevations of 15 and 35
degrees are considered. The important trend borne out is that AOA jitter
decreases very slowly with increasing antenna size. It is seen that doub-
ling the antenna diameter from the nominal 2 meters to 4 meters achieves
less than a 15 percent reduction in Oy such a small reduction being
insignificant compared to uncertainties in knowing the dust environment.
Portability, survivability, and cost put obvious constraints on the maxi-
mum allowable antenna size whereas it is suggested by Figure 4 that it
would take a very large antenna to achieve substantial reductions in Oy

We conclude here that mitigation of AQA effects by merely in-
creasing antenna size is not feasible,

COMMAND GUIDANCE

The location of the SDR and interceptor launch point relative to
a "keep-out" zone which they are to defend may impact the effect of AOA
errors on miss distance when command guidance is used. Referring to
Figure 5, locating the SDR and interceptor launch point in the vicinity of
their defended "keep-out" zone results in trajectories where the angular
deviation between target and interceptor tends to be small during a sig-
nificant fraction of the interceptor's flight. For this part of the
flight, the AOA jitter on the target echoes will he correlated with the
AQA jitter associated with tracking of the interceptor, since the returned
signals from each will traverse nearly identical paths through the pedes-
tal cloud. Then, if the guidance commands to the interceptor are propor-
tional to the angular separation between the target and interceptor, the
AOA jitter on the two angle estimates would be removed through subtraction

17
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when constructing the gquidance signals. This implies that there is a

possible advantage in choice of siting for the SDR and interceptor that
would encourage a line of sight type interception geometry.

[t is desirable to estimate the angular alignment necessary for
this effect to be significant. This may be indicated by calculating the
correlation between the fluctuating part of the AQOA for the returned
signals from two targets as a function of their angular separation. As a
simplification we once again apply results from geometrical optics theory

which we have previously shown to be applicable.

From Reference 2, the correlation of the AQOA jitter for the com-
ponent of the jitter in the direction of the targets' anqular separation

may be expressed as

8/3 _ _yY8/3 _ 8/ 3
R(6) ='§— {1+x) (1-x) 2x Cx o1 15
16 X =
8/ 3 _1y8/3 8/3
R(G) - ‘3__ (1+X) + (X 1) 2% DX 1 (13)
16 X
where
x = S_L_tan(e/Z) (14)
L = dust cloud propagation path length
D = antenna diameter
g = angular separation of the targets.

The additional assumption of a Kolmogorov dust cloud tirbulence spectrum
has been made. The correlation has been normalized to be unity for zero

anqular separation.

19




Figure 6 shows the correlation predicted by Equations 12 and 13
as a function of e for several propagation path lengths and an antenna
diameter of 2 meters. It is seen that there is still a high (=85%) corre-
lation in the AQA jitter for an angular separation of 10 degrees for the
10 meter path, and a moderate (=40%) correlation at 10 degrees for the 100
meter path. This implies that significant reductions in the ADA jitter-
caused guidance errors could be made for target and interceptor line of
sight separations under 10 degrees. It is also seen that the predicted
correlation increases quickly with decreasing g so that even larger reduc-
tions in AOA jitter-caused guidance errors would be possible if the angu-
lar separations were expected to be much smaller than 10 degrees.

The rather high correlations result from the fact that the
pedestal dust cloud is by nature of low height leading to short propaga-
tion paths. Accounting for the uncertainty in current knowiedge of the
dust density scale heights of a nuclear dust cloud pedestal, scale heights
under 10 meters are possible. [f a scale height under 10 meters is appli-
cable this would also lead to higher predicted correlations. Correspond-
ingly, path lengths longer than 100 meters would decorrelate faster with
increasing target separation.

A further remark concerning these predictions is that they apply
for comparison of simultaneous returns from the two separated targets.
The time delay in sampling which can be safely allowed before there would
be a reduction in the predicted correlation can be estimated by referring
back to Figure 2.

The practicality of this geometry-sensitive technigue depends on
many factors. One consideration is how closely the interceptor's trajec-
tory would actually follow the radar's line of sight to the target for
this type of engagement. Assuming close alignment during say the last half
of the interceptor's flight, then the effect of giving correct guidance
over this time only must be assessed as to its impact on miss distance,

20




o
®

o
o

CORRELATION OF AOA JITTER

\‘\
0.4 | —
0.2+ -
= -4
08 PR T I | N soa 1 1 | i 1 | TR | 1
.0 20 4.0 6.0 8.0 10.0

ANGULAR SEPARATION OF THE TARGETS (DEGREES)

Figure 6. Correlation between AOA jitter for two separate targets as a
function of their angular separation for propagation path
lengths of 1A, 30 and 100 meters.

21

ij
i
!
|
[
|.
L)




AT,

There is also a possible degradation in the operating environment for the

SDR when located close to the zone it is to defend. We will not pursue
these guestions here.

RANGE TRIANGULATION

The use of netted monostatic radars to cetermine target direc-
tion using range-only data has been suggested (Reference 9) as a possible
alternative to conventional methods utilizing a single radar to sample tne
phase of the returned wave front. The advantage of this technique is that
range measurement inaccuracies fron propagation through a pedestal dust
cloud can be shown to be completely negligible. This implies that the
angle errors from dust cloud propagation effects would be small compared
to the nominal angle resolution of a range triangulation system.

The design regquirements for such a system to perform precision
angle tracking must be evaluated in order to assess its feasibility. Tar-
get location in 3 dimensions requires a minimun of 3 range measurements,
commonly referred to as trilateration. A treatment of the location accur-
acy for this general case is given by Skolnik 1in Reference 10.

As a simplification, we assess the angle sensing resolution
afforded by a single pair of radars. Referring to Figure 7, the radar
ground spacing is XG and the range estimates R, and R. are compared to
find the target elevation angle (g) which is measured relative to the
baseline connecting the radars. Then for a range measurement error M:,
the error in estimating g is approximately equal to

ag - SR (15)
XGs1ns

when the target range is much larger than X

6"
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Figure 7. Range triangulation. ~
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Assuming the nominal range error is 5 meters, then for a target
elevation of 90°, Equation 15 predicts a required ground spacing of 5
kilometers to achieve milliradian angle accuracy. For milliradian angle
accuracy at 15° target elevation the required spacing increases to about
20 kilometers., These examples show that quite large spacings are required
to attain milliradian angle accuracy for 5 meters of range error. If
greater range accuracy is attainable, the necessary spacing will scale
down accordingly.

The main drawback to the feasibility of such a system is the
necessity to maintain data communication links between the various radars
and a data processing center. These communications links are a source of
increased system complexity, cost, and vulnerability not present in the
single monostatic case.

24




SECTION 4
CONCLUSIONS

AOA jitter from radar propagation through a nuclear dust cloud
pedestal has previously been identified to be a potential source of degra-
dation for operation of a SDR. A limited list of mitigation techniques
has been evaluated. Key results from this analysis may be summarized as

follows:

@ Predictions for reducing jitter through pulse integration should
take account of the time correlation of the fluctuating AQA
samples. Maximum sampling rates which would provide independence
are estimated to be in the 10 to 100 Hz range.

® frequency agility has been found to be quite ineffective as a
means to generate independent AQA estimates.

® Increasing the antenna size is an ineffective means of reducing
jitter.

® A method for reducing the impact of AOA jitter on miss distance
has been identified for command guidance applications. The
effectiveness is dependent on interception geometries that main-
tain a small angular separation between target and interceptor.
Judicious siting of the SDR and interceptor launch points could
encourage favorable interception geometries,

® Using several radars to perform direction finding through range
measurements alone would entirely remove the effects of pedestal
cloud AOA jitter., However, very large distances (= 10 km) be-
tween the radars would be required to attain reasonable angle
tracking precision, The necessity to maintain data communication
links over these distances would increase the vulnerability of
the system to a stress environment.

25
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